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Introduction

Volatility is rough !

We know that : Volatility is rough !

On any asset, using any reasonable volatility proxy/statistical
method (realized volatility, realized kernels, uncertainty zones,
Garman-Klass, implied volatility, power variations,
autocorrelations, Whittle,...), one concludes that volatility is
rough.

It cannot be just coincidence...

We want to show that typical behaviors of market participants
at the high frequency scale naturally lead to rough volatility.

Our modeling tool : Hawkes processes.
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Definition

Hawkes process

A Hawkes process (Nt)t≥0 is a self-exciting point process,
whose intensity at time t, denoted by λt , is of the form

λt = µ+
∑

0<Ji<t

φ(t − Ji ) = µ+

∫
(0,t)

φ(t − s)dNs ,

where µ is a positive real number, φ a regression kernel and
the Ji are the points of the process before time t.

These processes have been introduced in 1971 by Hawkes in
the purpose of modeling earthquakes and their aftershocks.
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Definition

Order flow and volatility

Thus, it is nowadays classical to model the order flow
(number of trades) thanks to Hawkes processes.

It is known from financial economics theory (see for example
Madhavan, Richardson and Roomans (97)) that the order flow
is essentially the same thing as the integrated volatility
(variance) if the time scale is large enough :

Nt ≈
∫ t

0
σ2(s)ds.
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Popularity of Hawkes processes in finance

Two main reasons for the popularity of Hawkes processes

These processes represent a very natural and tractable
extension of Poisson processes. In fact, comparing point
processes and conventional time series, Poisson processes are
often viewed as the counterpart of iid random variables
whereas Hawkes processes play the role of autoregressive
processes.

Another explanation for the appeal of Hawkes processes is
that it is often easy to give a convincing interpretation to such
modeling. To do so, the branching structure of Hawkes
processes is quite helpful.
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Hawkes processes as a population model

Poisson cluster representation

Under the assumption ‖φ‖1 < 1, where ‖φ‖1 denotes the L1

norm of φ, Hawkes processes can be represented as a
population process where migrants arrive according to a
Poisson process with parameter µ.

Then each migrant gives birth to children according to a non
homogeneous Poisson process with intensity function φ, these
children also giving birth to children according to the same
non homogeneous Poisson process, see Hawkes (74).

Now consider for example the classical case of buy (or sell)
market orders. Then migrants can be seen as exogenous
orders whereas children are viewed as orders triggered by other
orders.

Mathieu Rosenbaum Volatility is rough: microstructural foundations 9



Introduction
Hawkes processes

Microstructural foundations for rough volatility

Stability condition

The condition ‖φ‖1 < 1

The assumption ‖φ‖1 < 1 is crucial in the study of Hawkes
processes.

If one wants to get a stationary intensity with finite first
moment, then the condition ‖φ‖1 < 1 is required (similar
condition as for the AR(1) process).

This condition is also necessary in order to obtain classical
ergodic properties for the process.

For these reasons, this condition is often called stability
condition in the Hawkes literature.
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‖φ‖1 in practice

Degree of endogeneity of the market

From a practical point of view, a lot of interest has been
recently devoted to the parameter ‖φ‖1.

For example, Hardiman, Bercot and Bouchaud (13) and
Filimonov and Sornette (12,13) use the branching
interpretation of Hawkes processes on midquote data in order
to measure the so-called degree of endogeneity of the market,
defined by ‖φ‖1.
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‖φ‖1 in practice

Degree of endogeneity of the market

The parameter ‖φ‖1 corresponds to the average number of
children of an individual, ‖φ‖2

1 to the average number of
grandchildren of an individual,. . . Therefore, if we call cluster
the descendants of a migrant, then the average size of a
cluster is given by

∑
k≥1 ‖φ‖k1 = ‖φ‖1/(1− ‖φ‖1).

Thus, the average proportion of endogenously triggered events
is ‖φ‖1/(1− ‖φ‖1) divided by 1 + ‖φ‖1/(1− ‖φ‖1), which is
equal to ‖φ‖1.
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‖φ‖1 in practice

Unstable Hawkes processes

This branching ratio can be measured using parametric and
non-parametric estimation methods for Hawkes processes, see
Ogata (78,83) for likelihood based methods and
Reynaud-Bouret and Schbath (10) and Al Dayri et al. (11) for
functional estimators of the function φ.

In Hardiman, Bercot and Bouchaud (13), very stable
estimations of ‖φ‖1 are reported for the E-mini S&P futures
between 1998 and 2012, the results being systematically close
to one.

This is also the case for Bund and Dax futures in Al Dayri et
al. (11) and various other assets in Filimonov and Sornette
(12).
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Aim of our study

Limiting behavior of Hawkes processes

Our aim is to study the behavior at large time scales of
so-called nearly unstable Hawkes processes, which
correspond to these estimations of ‖φ‖1, close to 1.

This will give us insights on the properties of the integrated
volatility.

Furthermore, we want to take into account another stylized
fact : The function φ has typically a power law tail :

φ(x) ∼
x→+∞

K

x1+α
,

with α of order 0.5-0.7.

This memory effect is likely due to metaorders splitting.

Mathieu Rosenbaum Volatility is rough: microstructural foundations 14



Introduction
Hawkes processes

Microstructural foundations for rough volatility

Table of contents

1 Introduction

2 Hawkes processes

3 Microstructural foundations for rough volatility

Mathieu Rosenbaum Volatility is rough: microstructural foundations 15



Introduction
Hawkes processes

Microstructural foundations for rough volatility

The model

Sequence of Hawkes processes

We consider a sequence of Hawkes processes (NT
t )t≥0 indexed

by T →∞ with

λTt = µT +

∫ t

0
φT (t − s)dNT

s .

For some sequence aT < 1, aT → 1, K > 0 and α ∈ (0, 1) :

φT (t) = aTφ(t), αxα
(
1− F (x)

)
→

x→+∞
K ,

with ‖φ‖1 = 1 and

F (x) =

∫ x

0
φ(s)ds.
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Non-degenerate limit for nearly unstable Hawkes processes

Martingale process

Let MT be the martingale process associated to NT , that is,
for t ≥ 0,

MT
t = NT

t −
∫ t

0
λTs ds.

We also set ψT the function defined on R+ by

ψT (t) =
∞∑
k=1

(φT )∗k(t).

We can show that

λTt = µT +

∫ t

0
ψT (t − s)µTds +

∫ t

0
ψT (t − s)dMT

s .
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Non-degenerate limit for nearly unstable Hawkes processes

Rescaling

We rescale our processes so that they are defined on [0, 1]. To
do that, we consider for t ∈ [0, 1]

λTtT = µT +

∫ tT

0
ψT (Tt − s)µTds +

∫ tT

0
ψT (Tt − s)dMT

s .

For the scaling in space, a natural multiplicative factor is
(1− aT )/µT . Indeed, in the stationary case,

E[λTt ] = µT/(1− ‖φT‖1).

Thus, the order of magnitude of the intensity is
µT (1− aT )−1. This is why we define

CT
t = λTtT (1− aT )/µT .
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Non-degenerate limit for nearly unstable Hawkes processes

Decomposition of CT
t

Then we easily get :

CT
t = (1− aT ) +

∫ t

0
T (1− aT )ψT (Ts)ds

+

√
T (1− aT )

µT

∫ t

0
ψT (T (t − s))

√
CT
s dBT

s ,

with

BT
t =

1√
T

∫ tT

0

dMT
s√
λTs

.
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Non-degenerate limit for nearly unstable Hawkes processes

The function ψT

The asymptotic behavior of CT
t is closely linked to that of ψT .

Remark that the function defined for x ≥ 0 by

ρT (x) = T
ψT (Tx)

‖ψT‖1

is the density of the random variable

XT =
1

T

IT∑
i=1

Xi ,

where the (Xi ) are iid random variables with density φ and IT

is a geometric random variable with parameter 1− aT .
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Non-degenerate limit for nearly unstable Hawkes processes

The function ψT

The Laplace transform of the random variable XT , denoted
by ρ̂T , satisfies :

ρ̂T (z) =
φ̂( z

T )

1− aT
1−aT (φ̂( z

T )− 1)
,

where φ̂ denotes the Laplace transform of X1.

Due to the assumptions on φ, we have

φ̂(z) = 1− K
Γ(1− α)

α
zα + o(zα).
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The function ψT

Set δ = K Γ(1−α)
α and vT = δ−1Tα(1− aT ).

Using that aT and φ̂( z
T ) both tend to 1 as T goes to infinity,

ρ̂T (z) is equivalent to

vT
vT + zα

.

The function whose Laplace transform is equal to this last
quantity is given by

vT x
α−1Eα,α(−vT xα),

with Eα,β the (α, β) Mittag-Leffler function.
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Non-degenerate limit for nearly unstable Hawkes processes

Expected limit for CT
t

Putting everything together, we can expect (for α > 1/2)

CT
t ∼ vT

∫ t

0
sα−1Eα,α(−vT sα)ds

+ γT vT

∫ t

0
(t − s)α−1Eα,α(−vT (t − s)α)

√
CT
s dBT

s ,

with

γT =
1√

µTT (1− aT )
.

The process BT can be shown to converge to a Brownian
motion B.
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Non-degenerate limit for nearly unstable Hawkes processes

Expected limit for CT
t

We need that both vT and γT converge to positive constants
so we assume :

Tα(1− aT )→ λδ, T 1−αµT → µ∗δ−1.

Passing to the limit, we obtain (for α > 1/2)

C∞t ∼ λ
∫ t

0
sα−1Eα,α(−λsα)ds

+

√
λ

µ∗

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)

√
C∞s dBs .
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Non-degenerate limit for nearly unstable Hawkes processes

Limit theorem

For α > 1/2, the sequence of renormalized Hawkes processes
converges to some process which is differentiable on [0, 1].
Moreover, the law of its derivative V satisfies

Vt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
f α,λ(t − s)

√
VsdB

1
s ,

with B1 a Brownian motion and

f α,λ(x) = λxα−1Eα,α(−λxα).
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Non-degenerate limit for nearly unstable Hawkes processes

Rough Heston model

Using fractional integration, we easily get that the equation for Vt

on the preceding slide is equivalent to

Vt =
1

Γ(α)

∫ t

0
(t−s)α−1λ(1−Vs)ds+

1

Γ(α)

√
λ

µ∗

∫ t

0
(t−s)α−1

√
VsdBs .

Now recall Mandelbrot-van-Ness representation :

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs .

Therefore we have a rough Heston model with H = α− 1/2.
Furthermore, for any ε > 0, Y has Hölder regularity α− 1/2− ε.
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Agent based explanation for rough volatility

Microstructural foundations for the RFSV model

It is clearly established that there is a linear relationship
between cumulated order flow and integrated variance.

Consequently the “derivative” of the order flow corresponds to
the spot variance.

Thus endogeneity of the market together with order splitting
lead to a superposition effect which explains (at least partly)
the rough nature of the observed volatility.

Near instability together with a tail index α ∼ 0.6 correspond
to H ∼ 0.1.
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